svm과 머신러닝
This commit is contained in:
98
ch15/knnplane/main.cpp
Normal file
98
ch15/knnplane/main.cpp
Normal file
@@ -0,0 +1,98 @@
|
||||
#include "opencv2/opencv.hpp"
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
using namespace std;
|
||||
|
||||
Mat img;
|
||||
Mat train, label;
|
||||
Ptr<KNearest> knn;
|
||||
int k_value = 1;
|
||||
|
||||
void on_k_changed(int k, void* userdata);
|
||||
void addPoint(const Point& pt, int cls);
|
||||
void trainAndDisplay();
|
||||
|
||||
int main() {
|
||||
img = Mat::zeros(Size(500, 500), CV_8UC3);
|
||||
knn = KNearest::create();
|
||||
|
||||
const int NUM = 30;
|
||||
Mat rn(NUM, 2, CV_32SC1);
|
||||
|
||||
randn(rn, 0, 50);
|
||||
for (int i = 0; i < NUM; i++) {
|
||||
addPoint(Point(rn.at<int>(i, 0) + 150, rn.at<int>(i, 1) + 150), 0);
|
||||
}
|
||||
randn(rn, 0, 50);
|
||||
for (int i = 0; i < NUM; i++) {
|
||||
addPoint(Point(rn.at<int>(i, 0) + 350, rn.at<int>(i, 1) + 150), 1);
|
||||
}
|
||||
randn(rn, 0, 70);
|
||||
for (int i = 0; i < NUM; i++) {
|
||||
addPoint(Point(rn.at<int>(i, 0) + 250, rn.at<int>(i, 1) + 400), 2);
|
||||
}
|
||||
|
||||
namedWindow("knn");
|
||||
createTrackbar("k", "knn", &k_value, 10, on_k_changed);
|
||||
|
||||
trainAndDisplay();
|
||||
|
||||
waitKey();
|
||||
destroyAllWindows();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void on_k_changed(int k, void* userdata) {
|
||||
if (k_value < 1) {
|
||||
k_value = 1;
|
||||
} else {
|
||||
k_value = k;
|
||||
}
|
||||
trainAndDisplay();
|
||||
}
|
||||
|
||||
void addPoint(const Point& pt, int cls) {
|
||||
Mat new_sample = (Mat_<float>(1, 2) << pt.x, pt.y);
|
||||
train.push_back(new_sample);
|
||||
|
||||
Mat new_label = (Mat_<int>(1, 1) << cls);
|
||||
label.push_back(new_label);
|
||||
}
|
||||
|
||||
void trainAndDisplay() {
|
||||
knn->train(train, ROW_SAMPLE, label);
|
||||
|
||||
for (int i = 0; i < img.rows; i++) {
|
||||
for (int j = 0; j < img.cols; j++) {
|
||||
Mat sample = (Mat_<float>(1, 2) << j, i);
|
||||
|
||||
Mat res;
|
||||
knn->findNearest(sample, k_value, res);
|
||||
|
||||
int response = cvRound(res.at<float>(0, 0));
|
||||
if (response == 0)
|
||||
img.at<Vec3b>(i, j) = Vec3b(128, 128, 255);
|
||||
if (response == 1)
|
||||
img.at<Vec3b>(i, j) = Vec3b(128, 255, 128);
|
||||
if (response == 2)
|
||||
img.at<Vec3b>(i, j) = Vec3b(255, 128, 128);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < train.rows; i++) {
|
||||
int x = cvRound(train.at<float>(i, 0));
|
||||
int y = cvRound(train.at<float>(i, 1));
|
||||
int l = label.at<int>(i, 0);
|
||||
|
||||
if (l == 0)
|
||||
circle(img, Point(x, y), 5, Scalar(0, 0, 128), -1, LINE_AA);
|
||||
if (l == 1)
|
||||
circle(img, Point(x, y), 5, Scalar(0, 128, 0), -1, LINE_AA);
|
||||
if (l == 2)
|
||||
circle(img, Point(x, y), 5, Scalar(128, 0, 0), -1, LINE_AA);
|
||||
}
|
||||
|
||||
imshow("knn", img);
|
||||
}
|
||||
Reference in New Issue
Block a user